

Gravitational Waves: Future Opportunities

GW science highlights over the next decades

Patrick Sutton Cardiff University

The ONASSIS FOUNDATION Science Lecture Series

29 July 2022

29 July 2022

Sutton - GW Future Opportunities - Onassis Lectures 2022

29 July 2022

Future Opportunities: Many topics!

- Multi-messenger astronomy
 - sites of r-process heavy element production, BNS vs NSBH, etc.
- Equation of state of dense nuclear matter
 - size of neutron stars; are there phase transitions beyond nucleons?
- Cosmology with standard sirens
 - Hubble parameter, dark energy equation of state and its variation with redshift
- Strong field tests of general relativity
 - binary black hole orbital dynamics
- Testing the black hole hypothesis
 - BH no-hair theorem, horizon structure, echoes, ...
- New fields and novel compact objects
 - ultra-light bosonic fields, axions, boson stars, extremely compact objects
- Primordial stochastic backgrounds
 - early universe phase transitions, cosmic strings, etc.

Some Key References

A Horizon Study for

Cosmic Explorer

Science, Observatories, and Community

Einstein Telescope Design Report Update 2020

https://dcc.cosmicexplorer.org/ https://apps.et-gw.eu/tds/ql/?c=15418 V. Kalgera et al., 2111.06990 M. Maggiore et al. 1912.02622 B. P. Abbott et al., 1304.0670

EXPLORER

29 July 2022

Exploring Binary Evolution

F. Broekgaarden et al. 2112.05763

μ	Label	Variation
A	fiducial	-
В	$\beta = 0.25$	fixed mass transfer efficiency of $\beta = 0.25$
С	$\beta = 0.5$	fixed mass transfer efficiency of $\beta = 0.5$
D	$\beta = 0.75$	fixed mass transfer efficiency of $\beta = 0.75$
Е	unstable/no case BB	case BB mass transfer is always unstable
F	E + K	case BB mass transfer is always unstable & HG donor stars initiating a CE may survive
G	$\alpha = 0.1$	CE efficiency parameter $\alpha = 0.1$
Н	$\alpha = 0.5$	CE efficiency parameter $\alpha = 0.5$
Ι	$\alpha = 2$	CE efficiency parameter $\alpha = 2$
J	$\alpha = 10$	CE efficiency parameter $\alpha = 10$
Κ	optimistic CE	HG donor stars initiating a CE may survive
L	rapid SN	Fryer rapid SN remnant mass model
М	$m_{\rm NS} = 2 {\rm M}_{\odot}$	maximum NS mass is fixed to $2 M_{\odot}$
Ν	$m_{\rm NS} = 3 {\rm M}_{\odot}$	maximum NS mass is fixed to $3 M_{\odot}$
0	no PISN	no PISN and pulsational-PISN
Р	$\sigma_{\rm rms}^{1D} = 100 {\rm km s^{-1}}$	$\sigma_{\rm rms}^{\rm 1D}$ = 100 km s ⁻¹ for core-collapse SNe
Q	$\sigma_{\rm rms}^{1D} = 30 \rm km s^{-1}$	$\sigma_{\rm rms}^{\rm 1D}$ = 30 km s ⁻¹ for core-collapse SNe
R	$v_{k,BH} = 0$	we assume BHs receive no natal kick
S	$f_{\rm WR} = 0.1$	Wolf-Rayet wind factor $f_{WR} = 0.1$
Т	$f_{\rm WR} = 5$	Wolf-Rayet wind factor $f_{WR} = 5$

(20 binary stellar evolution models) ×
(metallicity-dependent star formation
rate densities)

= 560 Universe realisations

29 July 2022

Outlook for LIGO/Virgo/KAGRA/LIGO-India

Constraining Binary Evolution Models

M. Zevin et al., Ap 846:82 (2017)

29 July 2022

Constraining Binary Evolution Models

Stochastic Gravitational-Wave Backgrounds

A Detectable Astrophysical Background

B. Abbott et al. Phys. Rev. D 104, 022004 (2021)

29 July 2022

Cosmology from Third Generation Instruments

Abbott et al. Nature 551, 85 (2017)

Cosmology from Third Generation Instruments

Cosmology from Third Generation Instruments

Determining the Neutron Star EOS

image: B. Sathyaprakash

29 July 2022

Determining the Neutron Star EOS

Post-merger SNR at 100 Mpc ~1 (LIGO/Virgo) ~10 (ET/CE)

S. Bose et al., Phys. Rev. Lett. 120, 031102 (2018)

PHYSICS BEYOND THE STANDARD MODEL: DOMAIN WALLS

SN 198

29 July 2022

Sutton - GW Future Opportunities - Onassis Lectures 2022

C. Ringeval_UCLouvai

Searching for Domain Walls

• Assumption: there exists an undetected scalar field ϕ with "Mexican hat" like potential .

e.g.: $V \sim a - b \phi^2 + c \phi^4$

 As the early Universe cools, different regions settle into the +η and -η vacuum states.

e.g. A. Vilenkin, Phys. Rep. 121, 263 (1985).

Domain Walls

"domain walls"

 The boundaries between the +η and η regions have non-zero energy density: "domain walls".

• Proposed solution for dark matter ...

Physical effect

• Simplest case: scalar field affects masses of fermion particles as

$$m_f \to m_f \left[1 + \left(\frac{\phi}{\Lambda'_f} \right)^2 \right]$$
 coupling constants

Test particles will "fall into" the wall as

$$\delta \boldsymbol{a}_{\text{test}} = -\frac{\boldsymbol{\nabla} M_{\text{test}}}{M_{\text{test}}}$$

H. Grote & Y. Stadnik, Phys. Rev. Research 1, 033187 (2019)

d 1 km V~300 km/s

Signal in an interferometer

- Typical speed ~ 300km/s (dark matter halo).
- Signal strength and morphology both depend on incident direction.

Signal in an interferometer

• Signal strength and morphology both depend on incident direction.

Projected Bounds

Signal in a Network

- Typical wall speed:
 v ~ 300 km/s ~ 0.001 c
- Coincidence window:

T ~ 10 s (HL) T ~ 30 s (HLV)

• Expect *many* coincident glitches

Simplest approach: cross-correlation search

PHYSICS BEYOND THE STANDARD MODEL: BLACK-HOLE ECHOES THE

FIG. 1: Spacetime depiction of gravitational wave echoes from a membrane/firewall on the stretched horizon, following a black hole merger event.

Sutton - GW Future Opportunities - Onassis Lectures 2022

THE ORIGIN OF ECHOES³²

- "Ordinary" black holes may be replaced by Exotic Compact Objects (ECOs
 - fuzzballs, gravastars, fireballs ...
 - Cardoso & Pani, Living Rev Relativ (2019) 22:4
- The ECO acts as a cavity, temporarily trapping waves between the near-horizon membrane barrier and the angular momentum barrier ("photon sphere") that exists further out.
 - Cardoso+ arXiv:1602.07309, Cardoso+ arXiv:1608.08637

29 July 2022

THE ECHO SIGNAL

Image from Westerweck+ 1712.09966

- Echoes of the late merger-ringdown
- Key parameters:
 - Amplitude A (unconstrained).
 - Decay parameter: 0 < γ < 1. Expect γ <~ 1 Wang+ 1803.02845, Correia+ 1802.07735
 - Echo repeat time Δt_{echo} :

$$\Delta t_{echo} \simeq \frac{4GM_{\rm BH}}{c^3} \left(1 + \frac{1}{\sqrt{1-a^2}} \right) \times \ln\left(\frac{M_{\rm BH}}{M_{\rm planck}}\right)$$
$$\simeq 0.126 \sec\left(\frac{M_{\rm BH}}{67 \ M_{\odot}}\right) \left(1 + \frac{1}{\sqrt{1-a^2}}\right),$$

Sutton - GW Future Opportunities - Onassis Lectures 2022

29 July 2022

THE ECHO REPEAT TIME

• Uncertainties:

- Moving barrier from L_{Planck} outside horizon to x10 changes Δt_{echo} by < 1%

•
$$t_{echo} - t_{merger} = \Delta t_{echo} + / - \sim 1\%$$

• QNM content uncertain but temporal (repeating) structure well-constrained.

$$\Delta t_{echo} \simeq \frac{4GM_{\rm BH}}{c^3} \left(1 + \frac{1}{\sqrt{1 - a^2}} \right) \times \ln \left(\frac{M_{\rm BH}}{M_{\rm planck}} \right)$$
$$\simeq 0.126 \, \sec \left(\frac{M_{\rm BH}}{67 \, M_{\odot}} \right) \left(1 + \frac{1}{\sqrt{1 - a^2}} \right),$$

Sutton - GW Future Opportunities - Onassis Lectures 2022

29 July 2022

TENTATIVE DETECTIONS OF ECHOES

• First evidence: Abedi+ 1612.00266

- Analysed O1 BBHs with a matched-filter search
- Combined analysis found signal with false-alarm probability p=0.011
- Caveats: see Westerweck+ 1712.09966
- Conklin+ 1712.06517: Model ~agnostic approach: using folded spectograms multiplied across detectors.
 - Found echoes for 5 BBHs with $p \sim 0.2\% 4\%$.
 - Δt_{echo} values shorter than Abedi+.

THE BNS EVENT GW170817

• Abedi & Afshordi 1803.10454 adapted the model-agnotic approach of Conklin+ 1712.06517 (folded spectograms multiplied across detectors).

• Results:

- $\Delta t_{echo} = 0.014s$ (f_{peak} = 72Hz)
- p = 1.6e-5 (4.2o)
- Contrast with Conklin+: $\Delta t_{echo} = 0.007s, p \sim 1\%$

Folded correlation spectrogram from 1803.10454

CONTRA-INDICATIONS

- Uchikata+ 1906.00838: More sophisticated matched-filter search using templates constructed from numerical solutions to the Teukolsky equations.
 - No significant events were found.
- Tsang 1906.11168: Apply BayesWave signalreconstruction algorithm to O1 & O2 events.
 - No significant events were found.

<u>Uchikata+ p values</u>				
	Data version			
Event	C01	C02		
GW150914	0.992	0.984		
GW151012	0.646	0.882		
GW151226	0.276	-		
GW170104	0.717	0.677		
GW170608	-	0.488		
GW170729	-	0.575		
GW170814	-	0.472		
GW170818	-	0.976		
GW170823	-	0.315		
Total	0.976	0.921		

FUTURE OPPORTUNITIES: MANY TOPIC[®]S!

- Multi-messenger astronomy
 - sites of r-process heavy element production, BNS vs NSBH, etc.
- Equation of state of dense nuclear matter
 - size of neutron stars; are there phase transitions beyond nucleons?
- Cosmology with standard sirens
 - Hubble parameter, dark energy equation of state and its variation with redshift
- Strong field tests of general relativity
 - binary black hole orbital dynamics
- Testing the black hole hypothesis
 - BH no-hair theorem, horizon structure, echoes, ...
- New fields and novel compact objects
 - ultra-light bosonic fields, axions, boson stars, extremely compact objects
- Primordial stochastic backgrounds
 - early universe phase transitions, cosmic strings, etc.

Thank You!!

29 July 2022